Customizable triangular factorizations of matrices
نویسنده
چکیده
Customizable triangular factorizations of matrices find their applications in computer graphics and lossless transform coding. In this paper, we prove that any N ×N nonsingular matrix A can be factorized into 3 triangular matrices, A = PLUS, where P is a permutation matrix, L is a unit lower triangular matrix, U is an upper triangular matrix of which the diagonal entries are customizable and can be given by all means as long as its determinant is equal to that of A up to a possible sign adjustment, and S is a unit lower triangular matrix of which all but N − 1 off-diagonal elements are set zeros and the positions of those N − 1 elements are also flexibly customizable, such as a single-row, a single-column, a bidiagonal matrix or other specially patterned matrices. A pseudo-permutation matrix, which is a simple unit upper triangular matrix with off-diagonal elements being 0, 1 or −1, can take the role of the permutation matrix P as well. In some cases, P may be the identity matrix. Besides PLUS, a customizable factorization also has other alternatives, LUSP, PSUL or SULP for lower S, and PULS, ULSP, PSLU, SLUP for upper S. © 2004 Elsevier Inc. All rights reserved.
منابع مشابه
On the necessity and sufficiency of PLUS factorizations
PLUS factorizations, or customizable triangular factorizations, of nonsingular matrices have found applications in source coding and computer graphics. However, there are still some open problems. In this paper, we present a new necessary condition and a sufficient condition for the existence of generic PLUS factorizations. © 2004 Elsevier Inc. All rights reserved.
متن کاملMultiple LU factorizations of a singular matrix
A singular matrix A may have more than one LU factorizations. In this work the set of all LU factorizations of A is explicitly described when the lower triangular matrix L is nonsingular. To this purpose, a canonical form of A under left multiplication by unit lower triangular matrices is introduced. This canonical form allows us to characterize the matrices that have an LU factorization and to...
متن کاملStable Factorizations of Symmetric Tridiagonal and Triadic Matrices
We call a matrix triadic if it has no more than two nonzero off-diagonal elements in any column. A symmetric tridiagonal matrix is a special case. In this paper we consider LXLT factorizations of symmetric triadic matrices, where L is unit lower triangular and X is diagonal, block diagonal with 1×1 and 2×2 blocks, or the identity with L lower triangular. We prove that with diagonal pivoting, th...
متن کاملAnalysis of Block LDL Factorizations for Symmetric Indefinite Matrices∗
We consider the block LDL factorizations for symmetric indefinite matrices in the form LBL , where L is unit lower triangular and B is block diagonal with each diagonal block having dimension 1 or 2. The stability of this factorization and its application to solving linear systems has been well-studied in the literature. In this paper we give a condition under which the LBL factorization will r...
متن کاملFast Algorithms for Toeplitz and Hankel Matrices
The paper gives a self-contained survey of fast algorithms for solving linear systems of equations with Toeplitz or Hankel coefficient matrices. It is written in the style of a textbook. Algorithms of Levinson-type and of Schur-type are discussed. Their connections with triangular factorizations, Padè recursions and Lanczos methods are demonstrated. In the case in which the matrices possess add...
متن کامل